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g-Phase Operators of Finite Dimensional
Two-Mode g-Oscillator Algebra

W.-S. Chung!

Theg-phase operators are constructed for two-ngpdscillators in a finite dimensional
Hilbert space. It is shown that tlgecoherent states for two-modgoscillators are not
minimum uncertainty states.

1. INTRODUCTION

Phase operator has been an important topic in quantized electromagnetic field
theory. First Susskind and Glogower (1964) studied it, but their phase operator is
not hermitian. About 10 years ago, Pegg and Barnett (1965) suggested a formalism
where all operators act in a finite-dimensional Hilbert space and the phase operator
is hermitian.

In the past few years)-deformed oscillator algebra (Biedenharn, 1989;
Macfarlane, 1989) was introduced in search of the representation of quantum al-
gebra. Recently, the hermitian phase operator for the single-mode electromagnetic
field was given in the-deformed case (Yang and Yu, 1995).

The purpose of this paper is to extend the previous results to two-mode
case. Two-mode extension gfoscillator algebra is not trivial because it should
possess thesy(2)-covariance. Thus, two-mode oscillator algebra is called
SUy(2)-covariant oscillator algebra. Two-mode (or multimogi@scillator algebra
was firstly introduced by Pusz and Woronowicz (1989).

2. HERMITIAN PHASE OPERATOR

SUy(2)-covariant oscillator algbera means two-mode oscillator algebra which
is covariant under theu,(2) algebra. It is defined as
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a1 = Qapay,
aja = q~'ajal,

ala; = qa;al,

2a] = qaja, (1)

aal = 1+ qajay,

23} = 1+ q%aja; + (o° — ajay,

[Ni.af]=5ija}. [Ni,aj] = -¢&ja;, (,j=1,2),

where deformation parametgis assumed to be real. In this caqhi,s an hermitian
conjugate operator af; and the number operatol§ is hermitian. Let us con-
sider the finite (but arbitrary large) dimensional state spacé su,(2)-covariant

oscillator algebra. Les(+ 1)? be the dimension of andsis some positive integer.
The number statp, m) € V are assumed to be orthonormal:

(n,m | n,m) = &y Smm,

Z In, m)(n, m| = 1.

n,m=0

(2)

We require that the usualy (2)-covariant oscillator algebra in the infinite dimen-
sional Hilbert space such as theannihilation, creation, and number operators,
have corresponding operators sif,(2)-covariant oscillator algebra in the finite
dimensional spav¥, which goes to the infinite dimensional spacesasnds to
infinity. These may be accomplished by the following definition

al = Y VInlIn,my(n—1,m),

n,m=1
aj = > o"vIml|n, mn,m— 1),

n,m=1
a = Z \/ﬁm -1, m)(n, mj,

e ©)
a= Y q"/[mln,m-1)n,m),

n,m=1

Ny = nn,my(n, m),
n,m=1
Nz = > min, m)(n, m),

n,m=1
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whereg-number K] is defined as

q2x_1
Q-1

[x] =

Applying aI, a; a;, anda, to the number eigenstape, m) gives
a{|n,m) =\/M|n+1,m), (n=0,1,...,s—-1, m=0,1,...,9)
aI|s, m =0, (m=0,1,...,9)
alln,m =q"/[m+1]jn,m+1), ("=0,1,...,5, m=0,1,...,5—1)
a£|n,s)=0, h=0,1,...,9)
an,m =+[nn=1,m), (nh,m=0,1,...,9)
an,m =q"/[mlinm—-1), (h,m=0,1,...,s) 4)

then the commutation relation for creation and annihilation operators of the finite
dimensionaku,(2)-covariant oscillator algebra becomes

S

aal —qg’ala; = 1—[s+1] Z Ism)(sm,

m=0 s (5)
aa] — g%aja, = 1+ (02 — 1)ajay — [s+ 1] Y g®[ns)(ns].
n=0

The polar decomposition for the operatof3)(is an analogue of the complex
number decomposition= re'’ and is defined a® = UH, whereU is a partial
isometry (unitary) operator antd a hermitian operator. Using the similar method
in Pegg and Barnett (1989), one can obtain

a = €"/[Ny],
al = V[N e,
ap = €% /[Ng], ©
aj = VIN;Jq" e7'%.
From the relation (4), we have

€®n,m) = |n— 1, m),

(n,me'®*=mn-1,m, (n=1,...,5,m=0,...,5)

€®2|n,m) = |n,m— 1), @

(n,me'®2=(n,m-1/, (n=0,...,s,m=1,...,9)
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and
. S
&10,m) = > cMlk, m,
k=0
s 8)
€%n,0) =Y C?n, k).
k=0
From the Egs. (7) and (8), we have
cl=c?=0, k=0,1,...,5-1) 9)
and

é®110,m) = C{|s, my),
é®2|n, 0) = CP|n, s).
From the unitary requirement fef®: ande ®2, we can set
CP =y, C¥=yy (10)

wherey; andyr, are real numbers. The unitary phase operadrsande ®2 can
then be written as projection operators

S

g = Zi In—1,my(n, m| + €V XS: Ism) (Om|,
m=0

n=1m=0 =

(11)
S S S
€ =3"%"In,m—1)(n,m[+ €2 " |ns)(n0.
n=0 m=1 n=0
The exponential phase operators are mutually commutative,
eiq)l eiq)g — eiq)g el (131. (12)

Note that the Eg. (11) ig-independent and is the same as in in Pegg and Barnett
(1989). We can say that the phase operator is not deformed ig-tieformed
case. So the properties gf** ande ®2 are the same with the undeformed one. It
is worth noting that

ap = €®/[Ny] # [Ny + 1] €%,
ap = €%2q™/[Ng] # v/[Nz + 1]g™ €

in the finite dimensional case, as is different from the infinite dimensional case.
Instead, we have

a1 =€%/[Ni] = VN, + 1] €™ —e"1y/[s+ 1] Z |sm ¢om],
m=0

(13)

. (14)
ap = €”2q™/[Ng] = V[N + 1]g™ €92 — €2 /[s+ 1] ) _ [ns)(n0].
n=0
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Thus the properties dq’l_ and€ ®2 are the same with the undeformed one. Let
the eigenstate af ®* ande ®2 be

1 S ;
|6, Om) = —— e Chntnm|n, m) (15)
s+1 n,%::O
which obeys the eigenequation
€%16n, 6m) = €% |6h, Om) (16)
with
ei 21 — ei \ﬁl;f{lrr
gt — d V/Z:ff] -
and
b= b0+
TS
Om = 6 + am (0O<n, mM<ys)
m=T s Yo =
2 2
T s+1 s+1

where the value ofy are arbitrary andr; = v, is assumed for simplicity.

3. g-DEFORMED OPERATORS OF PHASE QUANTA

From Eq. (7), we know that the operat@$: andé€ ®2 play the roles of

step operators. And the operaters%il N ande~ 1™ are also step operators with
repect to the phase statés, 6m), because

210
e s N1|9na Om) = 16n-1, Om), (n#0)
e752%Nl|90a 9m) = |951 9m>,
21Ny _
€st110n, Om) = 1041, Om), (N #S)
et |05, On) = |60, Om),
_2ri (17)
€ s172|6n, Om) = [6n, Om-1), (m # O)
_2ri
€ s172|0y, Og) = |On, Os),
21N, _
€5+1210n, Om) = [6n, Omy1), (M #S)

e |0n, 6s) = |6, 6o).
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Using Eq. (19),e 1™ ande 1™ can be written in terms of the phase
states;

97%N1 = ZZ |9n 1, em On, 9m| + Z |951 em 909m

n=1 m=0

e s+1N2 = Zzwn,@m 1) en,9m|+2|9n,95 ) (Onbol.

n=0 m=1

(18)

Thus, we can also define tlgedeformed annihilation operators of phase quanta

as follows;
01 = e_%Nl\/ [q>l]!

0y = e HiNe™ /[0y

andaiT is obtained by taking the hermitian conjugation in the expression;for
Then, the phase operators read

(19)

S
®1=Y " Onl6h, Om) (On, Oml,

n,m=0

02T|9n7 Om) = qen\/ [Oms1]16n, Oms1), (M #S)
02 |Om, Os) = qen\/ [90]|9n, o),
That is to say thad; ando- operators can be written as

ZXN[Qn 161, 6m) en,9m|+2¢[eo 165, 6m) (6o, Oml

n=1 m=0

ZZan /[Qm |0n’9m l en,9m|+zq9n\/[eo |9n'95 9“160|

n=0 m=

. (20)
2= Omlbh, Om) (6n, Onl.
n,m=0
Theg-annihilation operators;’s satisfy
01/0n, Om) = V/[0n]16h-1, Om), (N # 0)
71160, Om) = v/[60]16s, Om),
0216, Om) = 4" /[0l (60, Om-1), (M #9)
0216h, 60) = a™v/[60] 60, 05).
116n, Om) = V/[Onsa]lbns1, Om), (N #£S) @
1105, 6m) = /[60] 100, Orm).
) =
) =
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ZZuen 16 Bm) (B 1,9m|+2¢[eo 160, 6m) (B, Oml

n=1 m=0

Zqu’"\/[em 16, 6m) {On, O 1I+Zq9”\/[90 16n, 60) (6n, 65 (22)

n=0 m=1

and their commutation relations are

n 2r >
o10] —q%ofcfl:[ +1]+([901 [0521) ) 165, Orn) (65, O,
m=0

v 2
0203 — qﬁaszfz = [m](l"i‘ (@2 — 1)oq o1) (23)
S
+([6] — [6s+1]) Y 4?16, O} (6, 6],
n=0

where we used the following identity

[Onsa] — G5 [00] = [%}

The remaining commutation relations are given by

0107 = qs+1ozal+2 — q*+51) /[00][Om-1] 105, Om) (B0, O
+[60] (4™ — o"+51) 65, 65) (6o, fol,

010§ = Q+iofor + Z (9% — q**+51)/[60][n] 101, 60} (6, 5|

m=1

(24)

+[60] (g% — g%+ 51) 65, 60) (6o, Bs|-

The commutation relations between phase operators|arthihilation operators
for phase quanta are

[® ] 2T
, O = —
Lo s+

s
1(71 + 27 n;)\/ [90] 8s, Om) (6o, Oml,

2 S
[CDZI 02] = - s nlo-z + 27{ Z qen V [90] |9n, 93) (en! 90'1 (25)
n=0

[®1, 02] = [P2,01] =0.
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From the above formula, we obtain the following expression

K | 12
(1) (03)' 160, 60) = (H[Gp] H[ej]) 0 6), L=<k 1<s)

s o’ m m 1/2 (26)
(1)(03)' 60, 60) = df (1‘[[&]) (1‘[[%]1'[[011) [6rm, O,
i=0 p=1 j=1

k=(+In+m, | =(s+1)n"+m)

where the value of, are arbitrary.

4. g-COHERENT STATES

We now define a new unnormalizgetoherent states of the finite dimensional
two-mode oscillators as follows;

|21, 22) n;o [n]l[m]l my. (27)

The norm of theg-coherent state is easily computed

(71, 22 | 71, 22) = &s(X1)Es(X2),

where finite dimensionaj-exponential functiores(x) is defined as
S

k
e =Y oo (28)
o [KI!

and z; and z, are taken to be ordinary (commuting) complex variables. Obvi-
ously, whens — oo , &5(X) becomes infinite dimensiongtexponential function
and |z;, z,) becomegy-coherent state of two-modg-oscillators in an infinite-
dimensional Hilbert space. Acting tlgeannihilation operators on ttegcoherent
states gives

Qlz1, 2) = 21<|21, Z) — J[s_ Z [m ' )

z
|21, o) = 22<|qzla 23) — «/[2_ Z [n I )

which implies that thej-coherent state defined in Eq. (29) is not an eigenstate of
the annihilation operator. The second terms on the right hand side of Eq. (31) come
from the finiteness of the dimension. Theoherent state obeys

(29)

2|21, 2o) = qQaay|z1, 22),

which is consistent with the commutation relations of the algebra (1).
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Now we introduce theg-position andg-momentum operatorX; and P as
follows;

o
Xi = 2mw(éﬂ.+ay),

h
P =/ 0@ -a),

wherei = 1, 2 and they satisfy
[Xi, P]=ih[a, a]. (31)

The uncertainty relation fay-position operator ang-momentum operator is given
by

(30)

1
(AXD)AH((AP)?) = T P2, (32)
where|z) = |z, zo) and
(zIA2)
A) = .
W=y

It is well known that the coherent states of an ordinary harmonic oscillator
minimize the uncertainty relation of; and P,. Now, we have a question: does
the g-coherent state defined in Eq. (29) minimize the uncertainty relatiog-for
position andg-momentum operators. In order to check this, we should compute
some expectation values for step operators and their combinations with respect to
theg-coherent state.

For theqg-coherent state, we have

__es1(xa)
(a1) =71 e(xr)

_ e(axes-a(x)
(@2 = 22— esx)
@l = (&),

2 565_2(X1)
@)=z es(x1)

2 _ 2&s(a*x1)eso(%2)
@) = %= e t0)
(&) = (a?)",

<aIal> — e_1(X1)

Yexy)
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2
(a;az) — %, es(q°X1)es-1(x2)

es(x1)es(x2)
o es_1(X1) 4 g2xges_a(Xq)
) = &s(X1)
(@al) = &s(0°x1) (Bs-1(X2) + G°X285-2(X2))
2% &s(X1)es(X2)
_ es(@®x)(es-1(a°%2) + Xo8s-2(X2))
B &s(X1)es(X2) ’
where we used
_ @@y
(z| ns) = DI
_ @@
tzlsm = [SITm]T

&s(x) + (9% — 1)xes-1(x) = &(a’x)

andx; implies thats = z'z = |z|?. So, we obtain

(Xq) = / ( 1z )es 1( 1)
es(0x1)es-1(X2)
061 = | iy B+ 20 2 e e()esxz)

€s-1(X1)
es(x1)

_ es(q X1)€s-1(X2)
(P = | 52 ) et

(P) =i —(1— 2)——-

(X3) =

h (21 + (2))? + 9°x1) &s—2(X1) + (X1 + 1)es— 1(X1)

) T 2mw &s(x1)

3=

Chung

h es(0?x1)[(Z2 + (2)? 4+ a%X2)es_2(X2) + (X2 + 1)es— 1(X2)]

2mow €s(X1)es(%2)

mhe (3 + (Z)? — 92%1)es-2(X1) + (—x1 — 1)es- 104).

P="7 e.(x)
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(P2) = — mho e5(a%x1)[(Z + ()% — aX2)es—2(X2) + (—X2 — 1)es_1(X2)]
o 2 &s(X1)es(x2)

AXE = %[es(xl)]_z[(zi + () + qle)es(xl)esf2(xl)
+ (X1 + Des_1(xa)es(xa) — (z1 + z5)(es—1(x0))?]
8% = 2 (e b0l ([ + (23 + a)es(a)en()

X €5(X2)es_2(X2) + (X2 + 1)es(X1)es(X1)es(Xz)es—1(X2)
— (22 + ) (es(ax)es-1(%2))?],

8P =~ e [(Z + (@) ~ axes(res ()
— (X1 + Des_1(x)es(xa) — (Z5 — z1)*(es—1(x1))?],
8PZ =~ e el Z[(B + (@) — ax)es(e ()

x &5(X2)es_2(X2) — (X2 + L)es(X1)es(a°X1)es(Xz)es—1(X2)
— (- 2)*(es(ax)es-1(x2))?],

(1 — xp)es—1(X1) + 9?X185_2(X1)

([X1, Py = ih e00) :
o es(@xa) (1 — xo)es 1(X2) + A°X08s 2(X2))
(e Py =10 e.0ex() | 33

Equation (34) shows that tliecoherent states in finite dimensional Hilbert space
are not minimum uncertainty states.

5. CONCLUSION

In this paper, | have studied tliedeformed phase operator for two-mode
g-oscillators. | introduced the finite dimensional two-magtescillator algebra
which hassuy(2)-covariance and expressed all operators in terms of number states
and phase states. Using the previous results, | constructed the hempjfease
operators for two-modg-oscillators. Finally, | obtained thg-coherent state ex-
plicitly. As is different from the undeformed case, it was shown thagitbeherent
states are not coherent states in the ordinary sense because they are neither mini-
mum uncertainty states nor eigenstateg-anihilation operators.
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