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q-Phase Operators of Finite Dimensional
Two-Mode q-Oscillator Algebra

W.-S. Chung1

Theq-phase operators are constructed for two-modeq-oscillators in a finite dimensional
Hilbert space. It is shown that theq-coherent states for two-modeq-oscillators are not
minimum uncertainty states.

1. INTRODUCTION

Phase operator has been an important topic in quantized electromagnetic field
theory. First Susskind and Glogower (1964) studied it, but their phase operator is
not hermitian. About 10 years ago, Pegg and Barnett (1965) suggested a formalism
where all operators act in a finite-dimensional Hilbert space and the phase operator
is hermitian.

In the past few years,q-deformed oscillator algebra (Biedenharn, 1989;
Macfarlane, 1989) was introduced in search of the representation of quantum al-
gebra. Recently, the hermitian phase operator for the single-mode electromagnetic
field was given in theq-deformed case (Yang and Yu, 1995).

The purpose of this paper is to extend the previous results to two-mode
case. Two-mode extension ofq-oscillator algebra is not trivial because it should
possess thesuq(2)-covariance. Thus, two-mode oscillator algebra is called
suq(2)-covariant oscillator algebra. Two-mode (or multimode)q-oscillator algebra
was firstly introduced by Pusz and Woronowicz (1989).

2. HERMITIAN PHASE OPERATOR

suq(2)-covariant oscillator algbera means two-mode oscillator algebra which
is covariant under thesuq(2) algebra. It is defined as
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a1a2 = qa2a1,

a†1a†2 = q−1a†2a†1,

a1a†2 = qa†2a1,

a2a†1 = qa†1a2, (1)

a1a†1 = 1+ q2a†1a1,

a2a†2 = 1+ q2a†2a2+ (q2− 1)a†1a1,

[Ni , a†j ] = δi j a
†
j , [Ni , aj ] = −δi j aj , (i , j = 1, 2),

where deformation parameterq is assumed to be real. In this case,a†i is an hermitian
conjugate operator ofai and the number operatorsNi is hermitian. Let us con-
sider the finite (but arbitrary large) dimensional state spaceV of suq(2)-covariant
oscillator algebra. Let (s+ 1)2 be the dimension ofV ands is some positive integer.
The number state|n, m〉 ∈ V are assumed to be orthonormal:

〈n′, m′ | n, m〉 = δnn′δmm′ ,
(2)s∑

n,m=0

|n, m〉〈n, m| = 1.

We require that the usualsuq(2)-covariant oscillator algebra in the infinite dimen-
sional Hilbert space such as theq-annihilation, creation, and number operators,
have corresponding operators ofsuq(2)-covariant oscillator algebra in the finite
dimensional spaveV , which goes to the infinite dimensional space ass tends to
infinity. These may be accomplished by the following definition

a†1 =
s∑

n,m=1

√
[n] |n, m〉〈n− 1, m〉,

a†2 =
s∑

n,m=1

qn
√

[m] |n, m〉〈n, m− 1〉,

a1 =
s∑

n,m=1

√
[n] |n− 1, m〉〈n, m〉,

(3)

a2 =
s∑

n,m=1

qn
√

[m] |n, m− 1〉〈n, m〉,

N1 =
s∑

n,m=1

n|n, m〉〈n, m〉,

N2 =
s∑

n,m=1

m|n, m〉〈n, m〉,
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whereq-number [x] is defined as

[x] = q2x − 1

q2− 1
.

Applying a†1, a†2, a1, anda2 to the number eigenstate|n, m〉 gives

a†1|n, m〉 =
√

[n+ 1] |n+ 1, m〉, (n = 0, 1,. . . , s− 1, m= 0, 1,. . . , s)

a†1|s, m〉 = 0, (m= 0, 1,. . . , s)

a†2|n, m〉 = qn
√

[m+ 1] |n, m+ 1〉, (n = 0, 1,. . . , s, m= 0, 1,. . . , s− 1)

a†2|n, s〉 = 0, (n = 0, 1,. . . , s)

a1|n, m〉 =
√

[n] |n− 1, m〉, (n, m= 0, 1,. . . , s)

a2|n, m〉 = qn
√

[m] |n, m− 1〉, (n, m= 0, 1,. . . , s) (4)

then the commutation relation for creation and annihilation operators of the finite
dimensionalsuq(2)-covariant oscillator algebra becomes

a1a†1 − q2a†1a1 = 1− [s+ 1]
s∑

m=0

|sm〉〈sm|,
(5)

a2a†2 − q2a†2a2 = 1+ (q2− 1)a†1a1− [s+ 1]
s∑

n=0

q2n|ns〉〈ns|.

The polar decomposition for the operators (O) is an analogue of the complex
number decompositionz= rei θ and is defined asO = U H , whereU is a partial
isometry (unitary) operator andH a hermitian operator. Using the similar method
in Pegg and Barnett (1989), one can obtain

a1 = ei81
√

[N1],

a†1 =
√

[N1] e−i81,
(6)

a2 = ei82qN1
√

[N2],

a†2 =
√

[N2]qN1 e−iφ2.

From the relation (4), we have

ei81|n, m〉 = |n− 1, m〉,
〈n, m|e−i81 = 〈n− 1, m|, (n = 1, . . . , s, m= 0, . . . , s)

(7)
ei82|n, m〉 = |n, m− 1〉,
〈n, m|e−i82 = 〈n, m− 1|, (n = 0, . . . , s, m= 1, . . . , s)
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and

ei81|0, m〉 =
s∑

k=0

C(1)
k |k, m〉,

(8)

ei82|n, 0〉 =
s∑

k=0

C(2)
k |n, k〉.

From the Eqs. (7) and (8), we have

C(1)
k = C(2)

k = 0, (k = 0, 1,. . . , s− 1) (9)

and

ei81|0, m〉 = C(1)
s |s, m〉,

ei82|n, 0〉 = C(2)
s |n, s〉.

From the unitary requirement forei81 andei82, we can set

C(1)
s = ψ1, C(1)

s = ψ2, (10)

whereψ1 andψ2 are real numbers. The unitary phase operatorsei81 andei82 can
then be written as projection operators

ei81 =
s∑

n=1

s∑
m=0

|n− 1, m〉〈n, m| + eiψ1

s∑
m=0

|sm〉〈0m|,
(11)

ei82 =
s∑

n=0

s∑
m=1

|n, m− 1〉〈n, m| + eiψ2

s∑
n=0

|ns〉〈n0|.

The exponential phase operators are mutually commutative,

ei81 ei82 = ei82 ei81. (12)

Note that the Eq. (11) isq-independent and is the same as in in Pegg and Barnett
(1989). We can say that the phase operator is not deformed in theq-deformed
case. So the properties ofei81 andei82 are the same with the undeformed one. It
is worth noting that

a1 = ei81
√

[N1] 6=
√

[N1+ 1] ei81,
(13)

a2 = ei82qN1
√

[N2] 6=
√

[N2+ 1]qN1 ei82

in the finite dimensional case, as is different from the infinite dimensional case.
Instead, we have

a1 = ei81
√

[N1] =
√

[N1+ 1] ei81 − eiψ1
√

[s+ 1]
s∑

m=0

|sm〉〈0m|,
(14)

a2 = ei82qN1
√

[N2] =
√

[N2+ 1]qN1 ei82 − eiψ2
√

[s+ 1]
s∑

n=0

|ns〉〈n0|.
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Thus the properties ofei81 andei82 are the same with the undeformed one. Let
the eigenstate ofei81 andei82 be

|θn, θm〉 = 1

s+ 1

s∑
n,m=0

ei (θnn+θmm)|n, m〉 (15)

which obeys the eigenequation

ei8i |θn, θm〉 = eiφi |θn, θm〉 (16)

with

eiφ1 = ei ψ1+2nπ
s+1

eiφ2 = ei ψ2+2mπ
s+1

and

θn = θ0+ 2nπ

s+ 1

θm = θ0+ 2mπ

s+ 1
, (0≤ n, m≤ s)

θ0 = ψ1

s+ 1
= ψ2

s+ 1

where the value ofθ0 are arbitrary andψ1 = ψ2 is assumed for simplicity.

3. q-DEFORMED OPERATORS OF PHASE QUANTA

From Eq. (7), we know that the operatorsei81 and ei82 play the roles of
step operators. And the operatorse−

2π i
s+1 N1 ande−

2π i
s+1 N2 are also step operators with

repect to the phase states|θn, θm〉, because

e−
2π i
s+1 N1|θn, θm〉 = |θn−1, θm〉, (n 6= 0)

e−
2π i
s+1 N1|θ0, θm〉 = |θs, θm〉,

e
2π i
s+1 N1|θn, θm〉 = |θn+1, θm〉, (n 6= s)

e
2π i
s+1 N1|θs, θm〉 = |θ0, θm〉,

(17)
e−

2π i
s+1 N2|θn, θm〉 = |θn, θm−1〉, (m 6= 0)

e−
2π i
s+1 N2|θn, θ0〉 = |θn, θs〉,

e
2π i
s+1 N2|θn, θm〉 = |θn, θm+1〉, (m 6= s)

e
2π i
s+1 N2|θn, θs〉 = |θn, θ0〉.
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Using Eq. (19),e−
2π i
s+1 N1 and e−

2π i
s+1 N2 can be written in terms of the phase

states;

e−
2π i
s+1 N1 =

s∑
n=1

s∑
m=0

|θn−1, θm〉〈θn, θm| +
s∑

m=0

|θs, θm〉〈θ0θm|,
(18)

e−
2π i
s+1 N2 =

s∑
n=0

s∑
m=1

|θn, θm−1〉〈θn, θm| +
s∑

n=0

|θn, θs〉〈θnθ0|.

Thus, we can also define theq-deformed annihilation operators of phase quanta
as follows;

σ1 = e−
2π i
s+1 N1

√
[81],

(19)
σ2 = e−

2π i
s+1 N2e81

√
[82]

andσ †i is obtained by taking the hermitian conjugation in the expression forσi .
Then, the phase operators read

81 =
s∑

n,m=0

θn|θn, θm〉〈θn, θm|,
(20)

82 =
s∑

n,m=0

θm|θn, θm〉〈θn, θm|.

Theq-annihilation operatorsσi ’s satisfy

σ1|θn, θm〉 =
√

[θn]|θn−1, θm〉, (n 6= 0)

σ1|θ0, θm〉 =
√

[θ0]|θs, θm〉,
σ2|θn, θm〉 = qθn

√
[θm]|θn, θm−1〉, (m 6= s)

σ2|θn, θ0〉 = qθn
√

[θ0]|θn, θs〉,
(21)

σ
†
1 |θn, θm〉 =

√
[θn+1]|θn+1, θm〉, (n 6= s)

σ
†
1 |θs, θm〉 =

√
[θ0]|θ0, θm〉,

σ
†
2 |θn, θm〉 = qθn

√
[θm+1]|θn, θm+1〉, (m 6= s)

σ
†
2 |θm, θs〉 = qθn

√
[θ0]|θn, θ0〉,

That is to say thatσi andσ †i operators can be written as

σ1 =
s∑

n=1

s∑
m=0

√
[θn]|θn−1, θm〉〈θn, θm| +

s∑
m=0

√
[θ0]|θs, θm〉〈θ0, θm|,

σ2 =
s∑

n=0

s∑
m=1

qθn
√

[θm]|θn, θm−1〉〈θn, θm| +
s∑

n=0

qθn
√

[θ0]|θn, θs〉〈θn, θ0|,
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σ
†
1 =

s∑
n=1

s∑
m=0

√
[θn]|θn, θm〉〈θn−1, θm| +

s∑
m=0

√
[θ0]|θ0, θm〉〈θs, θm|,

σ
†
2 =

s∑
n=0

s∑
m=1

qθn
√

[θm]|θn, θm〉〈θn, θm−1| +
s∑

n=0

qθn
√

[θ0]|θn, θ0〉〈θn, θs| (22)

and their commutation relations are

σ1σ
†
1 − q

4π
s+1σ

†
1σ1 =

[
2π

s+ 1

]
+ ([θ0] − [θs+1])

s∑
m=0

|θs, θm〉〈θs, θm|,

σ2σ
†
2 − q

4π
s+1σ

†
2σ2 =

[
2π

s+ 1

]
(1+ (q2− 1)σ †1σ1) (23)

+ ([θ0] − [θs+1])
s∑

n=0

q2θn |θn, θs〉〈θn, θs|,

where we used the following identity

[θn+1] − q
4π
s+1 [θn] =

[
2π

s+ 1

]
.

The remaining commutation relations are given by

σ1σ2 = q
2π
s+1σ2σ1+

s−1∑
m=0

(
qθ0 − qθs+ 2π

s+1
)√

[θ0][θm+1]|θs, θm〉〈θ0, θm+1|

+ [θ0]
(
qθ0 − qθs+ 2π

s+1
)|θs, θs〉〈θ0, θ0|,

(24)

σ1σ
†
2 = q

2π
s+1σ

†
2σ1+

s∑
m=1

(
qθ0 − qθs+ 2π

s+1
)√

[θ0][θn]|θn−1, θ0〉〈θn, θs|

+ [θ0]
(
qθ0 − qθs+ 2π

s+1
)|θs, θ0〉〈θ0, θs|.

The commutation relations between phase operators andq-annihilation operators
for phase quanta are

[81, σ1] = − 2π

s+ 1
σ1+ 2π

s∑
m=0

√
[θ0]|θs, θm〉〈θ0, θm|,

[82, σ2] = − 2π

s+ 1
σ2+ 2π

s∑
n=0

qθn
√

[θ0]|θn, θs〉〈θn, θ0|, (25)

[81, σ2] = [82, σ1] = 0.
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From the above formula, we obtain the following expression

(σ †1 )k(σ †2 )l |θ0, θ0〉 = qlθ0

(
k∏

p=1

[θp]
l∏

j=1

[θ j ]

)1/2

|θk, θl 〉, (1≤ k, l ≤ s)

(26)
(σ †1 )k(σ †2 )l |θ0, θ0〉 = qlθ0

(
s∏

i=0

[θi ]

) n+n′
2
(

m∏
p=1

[θp]
m′∏
j=1

[θ j ]

)1/2

|θm, θm′ 〉,

(k = (s+ 1)n+m, l = (s+ 1)n′ +m′)

where the value ofθ0 are arbitrary.

4. q-COHERENT STATES

We now define a new unnormalizedq-coherent states of the finite dimensional
two-mode oscillators as follows;

|z1, z2〉 =
s∑

n,m=0

zn
1zm

2√
[n]![ m]!

|n, m〉. (27)

The norm of theq-coherent state is easily computed

〈z1, z2 | z1, z2〉 = es(x1)es(x2),

where finite dimensionalq-exponential functiones(x) is defined as

es(x) =
s∑

k=0

xk

[k]!
, (28)

and z1 and z2 are taken to be ordinary (commuting) complex variables. Obvi-
ously, whens→∞ , es(x) becomes infinite dimensionalq-exponential function
and |z1, z2〉 becomesq-coherent state of two-modeq-oscillators in an infinite-
dimensional Hilbert space. Acting theq-annihilation operators on theq-coherent
states gives

a1|z1, z2〉 = z1

(
|z1, z2〉 − zs

1√
[s]!

s∑
m=0

zm
2√

[m]!
|sm〉

)
,

(29)

a2|z1, z2〉 = z2

(
|qz1, z2〉 − zs

2√
[s]!

s∑
n=0

qnzm
1√

[n]!
|ns〉

)
,

which implies that theq-coherent state defined in Eq. (29) is not an eigenstate of
the annihilation operator. The second terms on the right hand side of Eq. (31) come
from the finiteness of the dimension. Theq-coherent state obeys

a1a2|z1, z2〉 = qa2a1|z1, z2〉,
which is consistent with the commutation relations of the algebra (1).
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Now we introduce theq-position andq-momentum operatorsXi and Pi as
follows;

Xi =
√

h

2mω
(ai + a†i ),

(30)

Pi =
√

mhω

2
(a†i − ai ),

wherei = 1, 2 and they satisfy

[Xi , Pi ] = i h[ai , a†i ]. (31)

The uncertainty relation forq-position operator andq-momentum operator is given
by

〈(1Xi )
2〉〈(1Pi )

2〉 ≥ 1

4
|〈[Xi , Pi ]〉|2, (32)

where|z〉 = |z1, z2〉 and

〈A〉 = 〈z|A|z〉〈z | z〉 .

It is well known that the coherent states of an ordinary harmonic oscillator
minimize the uncertainty relation ofXi and Pi . Now, we have a question: does
theq-coherent state defined in Eq. (29) minimize the uncertainty relation forq-
position andq-momentum operators. In order to check this, we should compute
some expectation values for step operators and their combinations with respect to
theq-coherent state.

For theq-coherent state, we have

〈a1〉 = z1
es−1(x1)

es(x1)
,

〈a2〉 = z2
es(qx1)es−1(x2)

es(x1)es(x2)
,

〈a†i 〉 = 〈ai 〉∗,〈
a2

1

〉 = z2
1
es−2(x1)

es(x1)
,

〈
a2

2

〉 = z2
2
es(q2x1)es−2(x2)

es(x1)es(x2)
,〈

a†2i

〉 = 〈a2
i

〉∗
,

〈a†1a1〉 = x1
es−1(x1)

es(x1)
,
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〈a†2a2〉 = x2
es(q2x1)es−1(x2)

es(x1)es(x2)
,

〈a1a†1〉 =
es−1(x1)+ q2x1es−2(x1)

es(x1)
,

〈a2a†2〉 =
es(q2x1)(es−1(x2)+ q2x2es−2(x2))

es(x1)es(x2)
,

= es(q2x1)(es−1(q2x2)+ x2es−2(x2))

es(x1)es(x2)
,

where we used

〈z | ns〉 = (z∗1)n(z∗2)s

√
[n]![ s]!

,

〈z | sm〉 = (z∗1)s(z∗2)m

√
[s]![ m]!

,

es(x)+ (q2− 1)xes−1(x) = es(q
2x)

andxi implies thatxi = z∗i zi = |zi |2. So, we obtain

〈X1〉 =
√

h

2mω
(z∗1 + z1)

es−1(x1)

es(x1)
,

〈X2〉 =
√

h

2mω
(z∗2 + z2)

es(qx1)es−1(x2)

es(x1)es(x2)
,

〈P1〉 = i

√
mhω

2
(z∗1 − z1)

es−1(x1)

es(x1)
,

〈P2〉 =
√

mhω

2
(z∗2 − z2)

es(qx1)es−1(x2)

es(x1)es(x2)
,

〈
X2

1

〉 = h

2mω

(
z2

1 + (z∗1)2+ q2x1
)
es−2(x1)+ (x1+ 1)es−1(x1)

es(x1)
,

〈
X2

2

〉 = h

2mω

es(q2x1)
[(

z2
2 + (z∗2)2+ q2x2

)
es−2(x2)+ (x2+ 1)es−1(x2)

]
es(x1)es(x2)

,

〈
P2

1

〉 = − mhω

2

(
z2

2 + (z∗1)2− q2x1
)
es−2(x1)+ (−x1− 1)es−1(x1)

es(x1)
,
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〈
P2

2

〉 = − mhω

2

es(q2x1)
[(

z2
2+ (z∗2)

2− q2x2
)
es−2(x2)+ (−x2− 1)es−1(x2)

]
es(x1)es(x2)

,

1X2
1 =

h

2mω
[es(x1)]−2

[(
z2

1 + (z∗1)2+ q2x1
)
es(x1)es−2(x1)

+ (x1+ 1)es−1(x1)es(x1)− (z1+ z∗1)2(es−1(x1))2
]
,

1X2
2 =

h

2mω
[es(x1)es(x2)]−2

[(
z2

2 + (z∗2)2+ q2x2
)
es(x1)es(q

2x1)

× es(x2)es−2(x2)+ (x2+ 1)es(x1)es(q
2x1)es(x2)es−1(x2)

− (z2+ z∗2)2(es(qx1)es−1(x2))2
]
,

1P2
1 = −

mhω

2
[es(x1)]−2

[(
z2

1 + (z∗1)2− q2x1
)
es(x1)es−2(x1)

− (x1+ 1)es−1(x1)es(x1)− (z∗1 − z1)2(es−1(x1))2
]
,

1P2
2 = −

mhω

2
[es(x1)es(x2)]−2

[(
z2

2 + (z∗2)2− q2x2
)
es(x1)es(q

2x1)

× es(x2)es−2(x2)− (x2+ 1)es(x1)es(q
2x1)es(x2)es−1(x2)

− (z∗2 − z2)2(es(qx1)es−1(x2))2
]
,

〈[X1, P1]〉 = i h
(1− x1)es−1(x1)+ q2x1es−2(x1)

es(x1)
,

〈[X2, P2]〉 = i h
es(q2x1)((1− x2)es−1(x2)+ q2x2es−2(x2))

es(x1)es(x2)
. (33)

Equation (34) shows that theq-coherent states in finite dimensional Hilbert space
are not minimum uncertainty states.

5. CONCLUSION

In this paper, I have studied theq-deformed phase operator for two-mode
q-oscillators. I introduced the finite dimensional two-modeq-oscillator algebra
which hassuq(2)-covariance and expressed all operators in terms of number states
and phase states. Using the previous results, I constructed the hermitianq-phase
operators for two-modeq-oscillators. Finally, I obtained theq-coherent state ex-
plicitly. As is different from the undeformed case, it was shown that theq-coherent
states are not coherent states in the ordinary sense because they are neither mini-
mum uncertainty states nor eigenstates ofq-annihilation operators.
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